Reconstitution and structural analysis of the yeast box H/ACA RNA-guided pseudouridine synthase.
نویسندگان
چکیده
Box H/ACA ribonucleoprotein particles (RNPs) mediate pseudouridine synthesis, ribosome formation, and telomere maintenance. The structure of eukaryotic H/ACA RNPs remains poorly understood. We reconstituted functional Saccharomyces cerevisiae H/ACA RNPs with recombinant proteins Cbf5, Nop10, Gar1, and Nhp2 and a two-hairpin H/ACA RNA; determined the crystal structure of a Cbf5, Nop10, and Gar1 ternary complex at 1.9 Å resolution; and analyzed the structure-function relationship of the yeast complex. Although eukaryotic H/ACA RNAs have a conserved two-hairpin structure, isolated single-hairpin RNAs are also active in guiding pseudouridylation. Nhp2, unlike its archaeal counterpart, is largely dispensable for the activity, reflecting a functional adaptation of eukaryotic H/ACA RNPs to the variable RNA structure that Nhp2 binds. The N-terminal extension of Cbf5, a hot spot for dyskeratosis congenita mutation, forms an extra structural layer on the PUA domain. Gar1 is distinguished from the assembly factor Naf1 by containing a C-terminal extension that controls substrate turnover and the Gar1-Naf1 exchange during H/ACA RNP maturation. Our results reveal significant novel features of eukaryotic H/ACA RNPs.
منابع مشابه
Site-Specific Pseudouridine Formation in Preribosomal RNA Is Guided by Small Nucleolar RNAs
During the nucleolar maturation of eukaryotic ribosomal RNAs, many selected uridines are converted into pseudouridine by a thus far undefined mechanism. The nucleolus contains a large number of small RNAs (snoRNAs) that share two conserved sequence elements, box H and ACA. In this study, we demonstrate that site-specific pseudouridylation of rRNAs relies on short ribosomal signal sequences that...
متن کاملThe box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase.
Many or all of the sites of pseudouridine (Psi) formation in eukaryotic rRNA are selected by site-specific base-pairing with members of the box H + ACA class of small nucleolar RNAs (snoRNAs). Database searches previously identified strong homology between the rat nucleolar protein Nap57p, its yeast homolog Cbf5p, and the Escherichia coli Psi synthase truB/P35. We therefore tested whether Cbf5p...
متن کاملStructural mechanism of substrate RNA recruitment in H/ACA RNA-guided pseudouridine synthase.
H/ACA RNAs form ribonucleoprotein complex (RNP) with proteins Cbf5, Nop10, L7Ae, and Gar1 and guide site-specific conversion of uridine into pseudouridine in cellular RNAs. The crystal structures of H/ACA RNP with substrate bound at the active site cleft reveal that the substrate is recruited through sequence-specific pairing with guide RNA and essential protein contacts. Substrate binding lead...
متن کاملH/ACA guide RNAs, proteins and complexes.
H/ACA guide RNAs direct site-specific pseudouridylation of substrate RNAs by forming ribonucleoprotein (RNP) complexes with pseudouridine synthase Cbf5 and three accessory proteins. Recently determined crystal structures of H/ACA protein complexes and a fully assembled H/ACA RNP complex have provided significant insights into the architecture, assembly and mechanism of action of RNA-guided pseu...
متن کاملKinetic and thermodynamic characterization of the reaction pathway of box H/ACA RNA-guided pseudouridine formation
The box H/ACA RNA-guided pseudouridine synthase is a complicated ribonucleoprotein enzyme that recruits substrate via both the guide RNA and the catalytic subunit Cbf5. Structural studies have revealed multiple conformations of the enzyme, but a quantitative description of the reaction pathway is still lacking. Using fluorescence correlation spectroscopy, we here measured the equilibrium dissoc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 25 22 شماره
صفحات -
تاریخ انتشار 2011